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The concept of a "logarithmic electron multiplier," in particular, a logarithmic photo- 
electron multiplier (PEM), first appeared in [i, 2] in connection with the need to record sig- 
nals of an a priori unknown power and duration in connection with laser ranging of the atmo- 
sphere and ocean with the aim of determining their optical characteristics as well as in con- 
nection with the recording of the radiation accompanying some rapidly occurring processes. 
The phenomenon of logarithmic conversion of the density of an electron stream by the field of 
an intrinsic space charge lies at the basis of operation of a logarithmic electron multiplier. 
The complexity of the indicated phenomenon requires special methods of investigation. The 
physical formulation of the problem reduces to the solution of a time-dependent system of 
equations: those of Poisson, continuity, and motion in a three-dimensional region which is 
the collector unit of the electron multiplier with account taken of the self-consistency of 
the boundary conditions and the distribution function of electrons over the initial velocity 
vector. As a result it is necessary to obtain the corresponding current density function of 
dynode electrons as a function of the time. The solution of this problem in its complete for- 
mulation does not appear possible due to its categorical mathematical complexity. Therefore, 
the method of mathematical modeling of the physical phenomenon in question was selected, and 
numerical experiments were conducted. The main goal for conducting the numerical experiments 
consisted of obtaining the impulse parameters of the logarithmic phenomenon as well as refin- 
ing the differential and difference implementations of the original physical model by compar- 
ing the calculated characteristics with those obtained as a result of a physical experiment. 
The time-independent operation of a PEM has been previously investigated [4], and the results 
of physical experiments have been obtained for the impulse regime [3]. Therefore if the 
qualitative conclusions, and primarily the fundamental possibility of logarithmic conversion 
of the density of an electron stream by the field of an intrinsic space charge, have been 
confirmed, the quantitative characteristics of the physical process have not been completely 
discussed. For a complete understanding of the necessity of conducting a computational ex- 
periment one should note the advantage of the latter in comparison with the possibilities of 
a physical experiment. At present the response speed of a logarithmic PEM is estimated from 
the change in the duration of the output pulse at a level specified with respect to its maxi- 
mum value upon a successive decrease in the value of the output light pulse. The existing 
sources of nanosecond light pulses do not possess the necessary degree of stability, which 
leads to distortion of the shape and duration of the input signal and inadequacy of the con- 
ditions for making measurements. A computational experiment is devoid of the indicated short- 
comings, since one can specify the shape and duration of the input pulses to be constant in 
it. However, since the problem cannot be solved in its complete formulation, a number of 
physical and mathematical simplifications are necessary for conducting a computational experi- 
ment. 

The actual physical region in which logarithmic conversion of the density of an electron 
stream occurs is the drift interval of an electron multiplier of the "louvered" type. Its 
construction and the equipotential lines of the field [5] are presented in Fig. 1 (L denotes 
a dynode of the "louvered" type, S denotes a screen grid, T denotes the possible trajectories 
of the electrons). The region in Fig. 1 consists of two subregions: a -- with a complex field 
between the vanes of the "louver," and b -- the fields of a flat diode. The process of forma- 
tion of secondary and reflected electrons and the formation of the stream of electrons onto 
the next diode occur in a. The region a is an emitter of electrons for region b (B and C 
are the boundaries of region b). We shall assume that the emitting surface coincides with a 
practically flat equipotential surface, for example, B. We shall restrict ourselves to con- 
sideration of processes of the passage of a stream of electrons into b. Electrons emitted 
into b from the surface B possess some distribution over the velocity vector f(~). 
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Fig. 1 

This distribution is the result of the conversion of the initial distribution of secondary 
and reflected electrons in the electric field between vanes of the louver in region a. Up 
to now there has been no general analytic form of the distribution of secondary and reflected 

electrons over the initial velocity vector. However, analysis of numerous experimental in- 
vestigations [6] has shown the presence in the distribution of an exponential factor of the 
type exp(--v2/w). As the electrons pass between the vanes of the "louver", the exponential 
nature of the distribution is preserved both in accelerating and retarding fields [7]. At 
the same time the angular distribution is stretched out along the normal to the plane B by 
virtue of the electron-optical characteristics of the diode system [5]. 

Thus the problem of the passage of a time-varying stream of electrons in a plane diode 
has been solved on the assumption that the electrons leaving the emitter B have an exponen- 
tial distribution in the velocity component normal to B. 

We shall consider the system of equations 

A U ( x ,  t) = - -4gp(x ,  O, mOvlOt q- eOUlOx = O, Op(x, t)lOt ~ div ] = 0 (1)  

with the following boundary and initial conditions: 

U(O~ O) = O~ U ( x ~  O) = ~ ,  ](0, O, v) = (mv~12w)exp(--mv212w),  ](0, t) - -  F( t ) ,  p(x, O) = O, 

where the emitter B is located at the origin of the x axis and has a potential equal to zero,. 
x c and ~c are the coordinate and potential of the collector, f(0, 0, v) is the distribution 
function of electrons over velocity on the emitter at t = 0, F(t) is the shape of the input 
signal, and p(x, 0) is the density of the space charge at t = O. The problem described by 

the system of equations (i) is time-dependent and self-consistent, since the process of pas- 
sage of a stream of electrons develops in time and the potentials induced by the electrons can 

alter the boundary conditions. 

We shall use for the solution of the syotem of equations (i) the method of large parti- 
cles (MLP), which has been described in detail in [8] for time-dependent problems of aero- 

and hydrodynamics and some applied problems. We shall modify the MLP with application to our 
model. We shall devote most of our attention to the temporal aspects of the processes of 

formation and dissipation of the space charge upon the passage of pulsed electron streams. 

We shall construct a discrete model of the problem (i). To this end we shall introduce 
the coordinate system (x, v), where x is the spatial coordinate and v is the velocity of the 
electrons. We shall consider an Eulerian grid with the spacing 5x in x and Av in v. Each 
cell of the grid is specified by two indices (i, k), and a node of the grid is specified as 
(i • 1/2, k • 1/2), where i = I, ..., N and k = i, ..., M. We shall write the system of 

difference equations for the MLP 

U i L  1 2U~ + U a M 
- -  i -1 = - - 4 n e ~ ] ( x i ,  tn, vk)Av, 

Ax2 h=l  

. . . .  i = i  . . . . .  N ,  ( 2 )  

U n __ U n 
n ,+} ,_~ v~ +1 - -  v h e 

A t  + - -  O, m Ax 

. . . .  k = i . . . . .  M ,  
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( h ~  l M AMn 1 - -  AMn 1 

h = l  

. . . .  i = i  . . . . .  N ,  

=0, 

where At is the step in time, f(xi, t n, Vk) is a discrete representation of the distribution 
A n = (in n function for the cell (i, k) up to time t n, and Mi+~2 , i+i/2vi+i/2 determines the transfer 

of charge and mass through the boundary of the Eulerian grid. 

Thus the LP corresponds to the layer Ax and contains M groups of electrons with the 
velocity Vk, k = i, ..., M. 

We shall assume that each LP is represented not by a layer Ax but by an infinitely thin 

plane having charge qk, mass mk, and velocity Vk; the ratio qk/mk is equal to the ratio e/m 
for the electron, i.e., we shall assume that electrons with velocity v k in the layer Axare 

concentrated in a single plane -- in the plane of the LP. Then a stream of electrons in a 
plane diode will be represented by a set of moving charged LP planes. It is possible to ob- 
tain for such a stream at each time t n under some conditions the distribution of the potential 
in analytic form and thereby, omitting the Eulerian stage of the calculation, proceed to the 
calculation of the characteristics of the field in moving Lagrangian coordinates associated 
with the LP. The distribution of the potential inside the diode will depend on the distribu- 
tion of the charge density over the LP. For a distribution of the charge density over LP in 
the form of an axisymmetric Gaussian function o(r) = ooexp(--r2/b 2) the potential of the field 
near the x axis of a plane axisymmetric diode in any plane with the coordinate x is equal to 

l=l  b2 J 0 

where x~ is the coordinate of the l-th LP at time t n, Oo~ is the charge density at the cen- 

ter of the l-th LP on the x axis, and L is the number of all LP located inside the plane 
diode up to time t n. 

Since the component of the electron velocity in the direction of the x axis has been 
taken into account, the parallel representation of the field (3) does not contradict the 
initial assumptions. 

Calculation of the transfer of charge and mass inside the diode is associated with dis- 
crete specification of the current density function on the emitter j(0, t) = F(t); it 
is convenient to represent j(0, t) as a piecewise-constant function F(t) with a spacing 

6t and NI steps. The charge Q6t introduced by electrons from the emitter in a time 6t is 

M 1 

equal to Q~r ~ qh, i.e., the total charge of all the LP which leave the emitter in a time 
h : l  MI 

6t, and the mass is equal to the total mass 7~f6t= ~ m h. The quantities qk and m k are deter- 
h=l 

mined by a discrete representation of the distribution function. In the calculations the dis- 
tribution of electrons over velocity was specified as a piecewise-constant function with step 
6v and MI steps in the range of initial electron energies of 0-50 eV. 

In this scheme the conservation laws do not require additional control, since the con- 
figuration of the LP is preserved upon a transition from temporal layer t n to t n+1. 

Self-consistency of the problem (i) is manifested in the change of the boundary condi- 
tions under the action of induced charges on the cathode and anode as an electron stream 
passes. Taking account of the changing boundary conditions is accomplished by addition of 
the term ~(x, t n) to the expression (3), which represents the solution of the Laplace equa- 
tion AT= 0 in a plane diode under the following boundary conditions: 

~(0, t n) = ~(0, O) + U(O, tn), ~(~,  t n) = T(x~, O) + U(~,  tn). 

As a result the scheme for solution of the system (2) is modified. The system of grid equa- 
tions for the potential is replaced by the expression (3) with the additional term ~(x, tn), 
which takes account of the self-consistency of the problem. The intermediate quantities v~, 
x~, and un(x) are first calculated u~on the integration of the equations of motion, and then 
the transition to v~ +~, x~ +~, and un~(x), i.e., to the temporal layer t n+~ = t n + At, is 

carried out with the corrections taken into account. A system of grid equations of conti- 
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nuity is necessary for investigations of the behavior of the distribution function of elec- 
trons in the process of passage of a stream, the specification of the input signal func- 
tion, and obtaining the output signal function. Since the dynamics of the distribution func- 
tion of electrons over velocity or energy in the field of a space charge is not being inves- 
tigated in this paper, we shall restrict ourselves to consideration of the system of continu- 
ity equations near the coordinates of 0 and Xc, i.e., to the specification of F(t) and obtain- 
ing a discrete representation of F~(t) of the output signal. 

The stability of the computational scheme has been checked in the course of conducting 
the numerical experiments. To this end the behavior of the potential barrier function 
U(Xmin, t) was controlled, and physically unreal oscillations of U(xmin, t) were isolated. 
Two kinds of behavior of the function U(xmin, t) are given in Fig. 2a for a signal whose shape 
is shown in Fig. 2b. For NI = 50 the scheme becomes stable. However, the question of the sta- 
bility of the scheme is complicated by the necessity of modeling the passage of signals with 
an appreciable (in the range of 3-5 orders of magnitude) varying amplitude. The functions 
U(xmin, t) for the signal of Fig. 2b, k = i, 2, 3, 4, NI = 50, and MI = 6, are shown in Fig. 
3. For k ~ 4 the scheme becomes unstable, and it is necessary to increase the parameter N~. 
In this case the time of the calculations may turn out to be unjustifiably great in calcula- 

tions on a computer of average capacity. 

In order to check the reliability of the mathematical model which has been developed, a 
comparison is made of the results of the computational and physical experiments. The numeri- 
cal experiment was carried out on a BESM-6 computer. The passage of a signal F(t) (Fig. 4a) 
was modeled with the discretization parameters NI = 600 and MI = i0. The corresponding dis- 
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crete funcnLons of the output sig1:al F1(t) are shown in Fig. 4b. With the indicated discreti- 
zation parameters the computational process is stable. The dependence of the halfwidth To s 
of the output signal as a function of the maximum value of the input signal Fma x is constructed 
from the functions F1(t) (Fig. 5, curve i). A similar dependence (Fig. 5, curve 2) was ob= 
tained in the physical experiment of [9], in which an FEU-97 was irradiated by short pulses 
of laser radiation. The radiation power P was varied with neutral light filters in the I0 s 
range. The output signals from the photomultiplier were recorded with a high-speed oscillo- 
graph. As follows from Fig. 5, satisfactory agreement of the results is observed. 

The developed modification of the method of large particles adequately describes the 
dynamic phenomena of the passage of streams of electrons in electron multipliers. Nonlinear 
effects of the interaction of the streams and their influence on the characteristics of the 
devices are taken into account. It is also possible with the help of the method of large 
particles to investigate a number of physical characteristics of the process of passage of 
dense streams of particles with account taken of the space charge phenomenon, namely: the 
dynamics of the distribution function of the potential between the dynodes, and the dynamics 
of formation of the output signal on the collector of the multiplier. 

The developed modification of the method of large particles can be used to construct 
special kinds of electron multipliers having a nonlinear calibration characteristic which is 
realizable with the help of the space charge phenomenon. 
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